mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.
نویسندگان
چکیده
MicroRNAs (miRNAs) regulate target mRNAs through a combination of translational repression and mRNA destabilization, with mRNA destabilization dominating at steady state in the few contexts examined globally. Here, we extend the global steady-state measurements to additional mammalian contexts and find that regardless of the miRNA, cell type, growth condition, or translational state, mRNA destabilization explains most (66%->90%) miRNA-mediated repression. We also determine the relative dynamics of translational repression and mRNA destabilization for endogenous mRNAs as a miRNA is induced. Although translational repression occurs rapidly, its effect is relatively weak, such that by the time consequential repression ensues, the effect of mRNA destabilization dominates. These results imply that consequential miRNA-mediated repression is largely irreversible and provide other insights into the nature of miRNA-mediated regulation. They also simplify future studies, dramatically extending the known contexts and time points for which monitoring mRNA changes captures most of the direct miRNA effects.
منابع مشابه
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملKinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells.
MicroRNAs (miRNAs) regulate most cellular functions, acting by posttranscriptionally repressing numerous eukaryotic mRNAs. They lead to translational repression, deadenylation and degradation of their target mRNAs. Yet, the relative contributions of these effects are controversial and little is known about the sequence of events occurring during the miRNA-induced response. Using stable human ce...
متن کاملHow do microRNAs regulate gene expression?
miRNAs (microRNAs) are short non-coding RNAs that regulate gene expression post-transcriptionally. They generally bind to the 3′-UTR (untranslated region) of their target mRNAs and repress protein production by destabilizing the mRNA and translational silencing. The exact mechanism of miRNA-mediated translational repression is yet to be fully determined, but recent data from our laboratory have...
متن کاملMammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC
The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the...
متن کاملmicroRNA-Mediated Messenger RNA Deadenylation Contributes to Translational Repression in Mammalian Cells
Animal microRNAs (miRNAs) typically regulate gene expression by binding to partially complementary target sites in the 3' untranslated region (UTR) of messenger RNA (mRNA) reducing its translation and stability. They also commonly induce shortening of the mRNA 3' poly(A) tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2014